In an effort to better serve and retain customers as well as increase profits, telecommunications companies are utilizing powerful data mining, text mining, and advanced analytics techniques using STATISTICA Data Miner. These tools uncover interesting patterns and relationships that are used to set pricing, forecast demand, and improve customer relationships and loyalty. Recently, a consulting firm provided a successful strategy to a telecom company, based on results of a data mining project. The success story can be read here.

Some typical predictive analytic applications for the telecommunications industry include:

  • Customer Relationship Management
    • predicting customer retention and churn,
    • Detecting relationships that aid with cross-sales, up-sales, and other marketing ventures,
    • Predicting customer lifetime value to aid in acquisition strategies
    • Customer segmentation
  • Analyzing customer feelings and sentiment through Text Mining of
    • social media analysis, Twitter and Facebook comments
    • customer feedback and reviews, and
    • inquiries to technical support
  • Forecasting of network load factoring seasonal components and holidays, forecasting sales and growth, factoring in promotional campaigns,
  • Using quality control charting to monitor customer wait time during a phone call or for service repairs or customer disconnects,
  • Root cause analysis.


  • Relationship Management: The STATISTICA Data Miner tool offers a variety of high power algorithms to explore the patterns and relationships in customer data. We may be interested in understanding customer churn or how to market additional products and services to new and existing customers. This task is made much easier with the help of data mining tools.High powered predictive tools such as C&RT, CHAID, Boosted Trees, Random Forests, MARSplines and Support Vector Machine can predict the probability of an individual customer disconnect as well as the overall disconnect rate. Understanding this pattern then leads to a target customer segment where we should focus to minimize customer loss. Additionally, cluster analysis can define groups of customers with similar behavior, helping to better understand the customer and their needs. This understanding can be harnessed for the purpose of customer retention.

    Cluster and link analysis can be leveraged for cross-sales and up sales. This analysis helps the telecommunications company to target the right customers for a particular marketing campaign or promotional deal.

  • Sentiment Analysis: Understanding of the customer base is very beneficial to the relationship between the telecommunications company and its customers. STATISTICA Text Miner can help make short work of analyzing the buzz on social media such as Facebook, Twitter user forums, etc. Sentiment analysis helps the company to gauge their overall impression in the market.Text Mining of customer feedback and reviews can find patterns easily missed otherwise. For example, what products or services are mentioned most often in negative reviews? Or in positive reviews? Perhaps patterns detected in text mining of technical support and service repair notes can reveal areas for improvement.
  • Forecasting: STATISTICA Data Miner features several tools for forecasting such as Neural Networks Time Series, and traditional Time Series tools like ARIMA, Exponentially Weighted Moving Average, Fourier analysis, and many others. Using these tools, telecommunication companies can model the trends that affect network demands. Having a clear picture of future demand helps to devise a good strategy for marketing and resource management.
  • Monitoring: Telecommunications companies can monitor and track important metrics such as call volume, tower load, customer wait times, and service disconnects. Typical applications include monitoring processes, finding important controllable factors and anticipating issues before they occur.

    Areas of Application: Monitoring Processes with STATISTICA Enterprise QC and MAS

    STATISTICA Enterprise QC monitors the various critical processes that are taking place within the telecommunications company, such as call volume and tower load. Immediate alerting of spikes can allow the company to react quickly so that the fewest customers are negatively affected by temporary outages.

    STATISTICA Monitoring and Alerting Server (MAS) provides automated monitoring and dashboard summaries for highly automated processes within the telecommunications organization.

    Anticipating Issues before they occur with STATISTICA Process Optimization and Root Cause Analysis

    Anticipating Issues before they occur with STATISTICA Process Optimization and Root Cause Analysis

    STATISTICA Process Optimization and Root Cause Analysis is an exceptional tool for monitoring a process at each step along the way, even anticipating quality control problems with unmatched sensitivity and effectiveness. By integrating cutting-edge predictive modeling and data mining techniques with the vast array of traditional quality tools including quality control charting, process capability analysis, experimental design procedures and Six Sigma methods, STATISTICA Process Optimization and Root Cause Analysis allows for complete process understanding, root cause analysis, and accurate predictions of quality outcomes during the manufacturing process.

    STATISTICA Process Optimization and Root Cause Analysis allows you to take advantage of existing historical data and find patterns in the data that affect the process. Tower load, for example is a complex process, reliant on many factors and interactions. A traditional experimental design to find the driving factors is likely not feasible. Root Cause analysis uses your historical data to find factors and combinations of factors that affect the end product quality.

    STATISTICA Process Optimization and Root Cause Analysis builds predictive models that reflect the relationship between inputs and outcomes of the process. The models can then be used to simulate runs, finding optimal settings and improving overall quality of the process.

About statsoftsa

StatSoft, Inc. was founded in 1984 and is now one of the largest global providers of analytic software worldwide. StatSoft is also the largest manufacturer of enterprise-wide quality control and improvement software systems in the world, and the only company capable of supporting its QC products worldwide, with wholly owned subsidiaries in all major markets (StatSoft has 23 full-service offices, on all continents), and its software is available in more than 10 languages.

Posted on September 4, 2013, in Uncategorized. Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: